Types of StretchingGo to the previous, next chapter. Just as there are different types of flexibility, there are also different types of stretching. Stretches are either dynamic (meaning they involve motion) or static (meaning they involve no motion). Dynamic stretches affect dynamic flexibility and static stretches affect static flexibility (and dynamic flexibility to some degree).The different types of stretching are:
Ballistic stretching uses the momentum of a moving body or a limb in an attempt to force it beyond its normal range of motion. This is stretching, or "warming up", by bouncing into (or out of) a stretched position, using the stretched muscles as a spring which pulls you out of the stretched position. (e.g. bouncing down repeatedly to touch your toes.) This type of stretching is not considered useful and can lead to injury. It does not allow your muscles to adjust to, and relax in, the stretched position. It may instead cause them to tighten up by repeatedly activating the stretch reflex (see section The Stretch Reflex).
Dynamic stretching, according to Kurz, "involves moving parts of your body and gradually increasing reach, speed of movement, or both." Do not confuse dynamic stretching with ballistic stretching! Dynamic stretching consists of controlled leg and arm swings that take you (gently!) to the limits of your range of motion. Ballistic stretches involve trying to force a part of the body beyond its range of motion. In dynamic stretches, there are no bounces or "jerky" movements. An example of dynamic stretching would be slow, controlled leg swings, arm swings, or torso twists. Dynamic stretching improves dynamic flexibility and is quite useful as part of your warm-up for an active or aerobic workout (such as a dance or martial-arts class). See section Warming Up. According to Kurz, dynamic stretching exercises should be performed in sets of 8-12 repetitions. Be sure to stop when and if you feel tired. Tired muscles have less elasticity which decreases the range of motion used in your movements. Continuing to exercise when you are tired serves only to reset the nervous control of your muscle length at the reduced range of motion used in the exercise (and will cause a loss of flexibility). Once you attain a maximal range of motion for a joint in any direction you should stop doing that movement during that workout. Tired and overworked muscles won't attain a full range of motion and the muscle's kinesthetic memory will remember the repeated shorted range of motion, which you will then have to overcome before you can make further progress.
Active stretching is also referred to as static-active stretching. An active stretch is one where you assume a position and then hold it there with no assistance other than using the strength of your agonist muscles (see section Cooperating Muscle Groups). For example, bringing your leg up high and then holding it there without anything (other than your leg muscles themselves) to keep the leg in that extended position. The tension of the agonists in an active stretch helps to relax the muscles being stretched (the antagonists) by reciprocal inhibition (see section Reciprocal Inhibition). Active stretching increases active flexibility and strengthens the agonistic muscles. Active stretches are usually quite difficult to hold and maintain for more than 10 seconds and rarely need to be held any longer than 15 seconds. Many of the movements (or stretches) found in various forms of yoga are active stretches.
Passive stretching is also referred to as relaxed stretching, and as static-passive stretching. A passive stretch is one where you assume a position and hold it with some other part of your body, or with the assistance of a partner or some other apparatus. For example, bringing your leg up high and then holding it there with your hand. The splits is an example of a passive stretch (in this case the floor is the "apparatus" that you use to maintain your extended position). Slow, relaxed stretching is useful in relieving spasms in muscles that are healing after an injury. Obviously, you should check with your doctor first to see if it is okay to attempt to stretch the injured muscles (see section Pain and Discomfort). Relaxed stretching is also very good for "cooling down" after a workout and helps reduce post-workout muscle fatigue, and soreness. See section Cooling Down.
Many people use the term "passive stretching" and "static stretching" interchangeably. However, there are a number of people who make a distinction between the two. According to M. Alter, Static stretching consists of stretching a muscle (or group of muscles) to its farthest point and then maintaining or holding that position, whereas Passive stretching consists of a relaxed person who is relaxed (passive) while some external force (either a person or an apparatus) brings the joint through its range of motion. Notice that the definition of passive stretching given in the previous section encompasses both of the above definitions. Throughout this document, when the term static stretching or passive stretching is used, its intended meaning is the definition of passive stretching as described in the previous section. You should be aware of these alternative meanings, however, when looking at other references on stretching.
Isometric stretching is a type of static stretching (meaning it does not use motion) which involves the resistance of muscle groups through isometric contractions (tensing) of the stretched muscles (see section Types of Muscle Contractions). The use of isometric stretching is one of the fastest ways to develop increased static-passive flexibility and is much more effective than either passive stretching or active stretching alone. Isometric stretches also help to develop strength in the "tensed" muscles (which helps to develop static-active flexibility), and seems to decrease the amount of pain usually associated with stretching. The most common ways to provide the needed resistance for an isometric stretch are to apply resistance manually to one's own limbs, to have a partner apply the resistance, or to use an apparatus such as a wall (or the floor) to provide resistance. An example of manual resistance would be holding onto the ball of your foot to keep it from flexing while you are using the muscles of your calf to try and straighten your instep so that the toes are pointed. An example of using a partner to provide resistance would be having a partner hold your leg up high (and keep it there) while you attempt to force your leg back down to the ground. An example of using the wall to provide resistance would be the well known "push-the-wall" calf-stretch where you are actively attempting to move the wall (even though you know you can't). Isometric stretching is not recommended for children and adolescents whose bones are still growing. These people are usually already flexible enough that the strong stretches produced by the isometric contraction have a much higher risk of damaging tendons and connective tissue. Kurz strongly recommends preceding any isometric stretch of a muscle with dynamic strength training for the muscle to be stretched. A full session of isometric stretching makes a lot of demands on the muscles being stretched and should not be performed more than once per day for a given group of muscles (ideally, no more than once every 36 hours). The proper way to perform an isometric stretch is as follows:
Some people seem to recommend holding the isometric contraction for longer than 15 seconds, but according to SynerStretch (the videotape), research has shown that this is not necessary. So you might as well make your stretching routine less time consuming.
Recall from our previous discussion (see section How Muscles Contract) that there is no such thing as a partially contracted muscle fiber: when a muscle is contracted, some of the fibers contract and some remain at rest (more fibers are recruited as the load on the muscle increases). Similarly, when a muscle is stretched, some of the fibers are elongated and some remain at rest (see section What Happens When You Stretch). During an isometric contraction, some of the resting fibers are being pulled upon from both ends by the muscles that are contracting. The result is that some of those resting fibers stretch! Normally, the handful of fibers that stretch during an isometric contraction are not very significant. The true effectiveness of the isometric contraction occurs when a muscle that is already in a stretched position is subjected to an isometric contraction. In this case, some of the muscle fibers are already stretched before the contraction, and, if held long enough, the initial passive stretch overcomes the stretch reflex (see section The Stretch Reflex) and triggers the lengthening reaction (see section The Lengthening Reaction), inhibiting the stretched fibers from contracting. At this point, according to SynerStretch, when you isometrically contracted, some resting fibers would contract and some resting fibers would stretch. Furthermore, many of the fibers already stretching may be prevented from contracting by the inverse myotatic reflex (the lengthening reaction) and would stretch even more. When the isometric contraction is completed, the contracting fibers return to their resting length but the stretched fibers would remember their stretched length and (for a period of time) retain the ability to elongate past their previous limit. This enables the entire muscle to stretch beyonds its initial maximum and results in increased flexibility. The reason that the stretched fibers develop and retain the ability to stretch beyond their normal limit during an isometric stretch has to do with the muscle spindles (see section Proprioceptors): The signal which tells the muscle to contract voluntarily, also tells the muscle spindle's (intrafusal) muscle fibers to shorten, increasing sensitivity of the stretch reflex. This mechanism normally maintains the sensitivity of the muscle spindle as the muscle shortens during contraction. This allows the muscle spindles to habituate (become accustomed) to an even further-lengthened position.
PNF stretching is currently the fastest and most effective way known to increase static-passive flexibility. PNF is an acronym for proprioceptive neuromuscular facilitation. It is not really a type of stretching but is a technique of combining passive stretching (see section Passive Stretching) and isometric stretching (see section Isometric Stretching) in order to achieve maximum static flexibility. Actually, the term PNF stretching is itself a misnomer. PNF was initially developed as a method of rehabilitating stroke victims. PNF refers to any of several post-isometric relaxation stretching techniques in which a muscle group is passively stretched, then contracts isometrically against resistance while in the stretched position, and then is passively stretched again through the resulting increased range of motion. PNF stretching usually employs the use of a partner to provide resistance against the isometric contraction and then later to passively take the joint through its increased range of motion. It may be performed, however, without a partner, although it is usually more effective with a partner's assistance. Most PNF stretching techniques employ isometric agonist contraction/relaxation where the stretched muscles are contracted isometrically and then relaxed. Some PNF techniques also employ isometric antagonist contraction where the antagonists of the stretched muscles are contracted. In all cases, it is important to note that the stretched muscle should be rested (and relaxed) for at least 20 seconds before performing another PNF technique. The most common PNF stretching techniques are:
Notice that in the hold-relax-contract, there is no final passive stretch. It is replaced by the antagonist-contraction which, via reciprocal inhibition (see section Reciprocal Inhibition), serves to relax and further stretch the muscle that was subjected to the initial passive stretch. Because there is no final passive stretch, this PNF technique is considered one of the safest PNF techniques to perform (it is less likely to result in torn muscle tissue). Some people like to make the technique even more intense by adding the final passive stretch after the second isometric contraction. Although this can result in greater flexibility gains, it also increases the likelihood of injury. Even more risky are dynamic and ballistic PNF stretching techniques like the hold-relax-swing, and the hold-relax-bounce. If you are not a professional athlete or dancer, you probably have no business attempting either of these techniques (the likelihood of injury is just too great). Even professionals should not attempt these techniques without the guidance of a professional coach or training advisor. These two techniques have the greatest potential for rapid flexibility gains, but only when performed by people who have a sufficiently high level of control of the stretch reflex in the muscles that are being stretched. Like isometric stretching (see section Isometric Stretching), PNF stretching is also not recommended for children and people whose bones are still growing (for the same reasons. Also like isometric stretching, PNF stretching helps strengthen the muscles that are contracted and therefore is good for increasing active flexibility as well as passive flexibility. Furthermore, as with isometric stretching, PNF stretching is very strenuous and should be performed for a given muscle group no more than once per day (ideally, no more than once per 36 hour period). The initial recommended procedure for PNF stretching is to perform the desired PNF technique 3-5 times for a given muscle group (resting 20 seconds between each repetition). However, HFLTA cites a 1987 study whose results suggest that performing 3-5 repetitions of a PNF technique for a given muscle group is not necessarily any more effective than performing the technique only once. As a result, in order to decrease the amount of time taken up by your stretching routine (without decreasing its effectiveness), HFLTA recommends performing only one PNF technique per muscle group stretched in a given stretching session.
The isometric contraction of the stretched muscle accomplishes several things:
PNF stretching techniques take advantage of the sudden "vulnerability" of the muscle and its increased range of motion by using the period of time immediately following the isometric contraction to train the stretch receptors to get used to this new, increased, range of muscle length. This is what the final passive (or in some cases, dynamic) stretch accomplishes. Go to the previous, next chapter.
http://www.bradapp.net |